Aug 062018

With thanks to Elaine:

NOTE, thanks to Wikipedia,

CATION   An ion is an atom or molecule that has a non-zero net electrical charge  (its total number of electrons is not equal to its total number of protons). A cation is a positively-charged ion, while an anion is negatively charged. Because of their opposite electric charges, cations and anions attract each other and readily form ionic compounds.

RELATED:    Comment on “Estimates of exceedances of critical loads for acidification”, includes connection tar sands – nuclear – university.


– – – – – –

Estimates of exceedances of critical loads for acidifying deposition in Alberta and Saskatchewan

Paul A. Makar1, Ayodeji Akingunola1, Julian Aherne2, Amanda S. Cole1, Yayne-abeba Aklilu3, Junhua Zhang1, Isaac Wong4, Katherine Hayden1, Shao-Meng Li1, Jane Kirk5, Ken Scott6, Michael D. Moran1, Alain Robichaud1, Hazel Cathcart2, Pegah Baratzedah1, Balbir Pabla1, Philip Cheung1, Qiong Zheng1, and Dean S. Jeffries7

  • 1Air Quality Research Division, Environment and Climate Change Canada, Toronto and Montreal, Canada
  • 2Environmental and Resource Studies, Trent University, Peterborough, Canada
  • 3Environmental Monitoring and Science Division, Alberta Environment and Parks, Edmonton, Canada
  • 4Watershed Hydrology and Ecology Research Division, Canada Centre for Inland Waters, Environment and Climate Change Canada, Burlington, Canada
  • 5Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Canada
  • 6Technical Resources Branch, Environment Protection Division, Saskatchewan Ministry of the Environment, Regina, Canada
  • 7Canada Centre for Inland Waters, Environment and Climate Change Canada, Burlington, Canada

Abstract. Estimates of potential harmful effects on ecosystems in the Canadian provinces of Alberta and Saskatchewan due to acidifying deposition were calculated, using a 1-year simulation of a high-resolution implementation of the Global Environmental Multiscale-Modelling Air-quality and Chemistry (GEM-MACH) model, and estimates of aquatic and terrestrial ecosystem critical loads. The model simulation was evaluated against two different sources of deposition data: total deposition in precipitation and total deposition to snowpack in the vicinity of the Athabasca oil sands. The model captured much of the variability of observed ions in wet deposition in precipitation (observed versus model sulfur, nitrogen and base cation R2 values of 0.90, 0.76 and 0.72, respectively), while being biased high for sulfur deposition, and low for nitrogen and base cations (slopes 2.2, 0.89 and 0.40, respectively). Aircraft-based estimates of fugitive dust emissions, shown to be a factor of 10 higher than reported to national emissions inventories (Zhang et al., 2018), were used to estimate the impact of increased levels of fugitive dust on model results. Model comparisons to open snowpack observations were shown to be biased high, but in reasonable agreement for sulfur deposition when observations were corrected to account for throughfall in needleleaf forests. The model–observation relationships for precipitation deposition data, along with the expected effects of increased (unreported) base cation emissions, were used to provide a simple observation-based correction to model deposition fields. Base cation deposition was estimated using published observations of base cation fractions in surface-collected particles (Wang et al., 2015).

Both original and observation-corrected model estimates of sulfur, nitrogen, and base cation deposition were used in conjunction with critical load data created using the NEG-ECP (2001) and CLRTAP (2017) methods for calculating critical loads, using variations on the Simple Mass Balance model for terrestrial ecosystems, and the Steady State Water Chemistry and First-order Acidity Balance models for aquatic ecosystems. Potential ecosystem damage was predicted within each of the regions represented by the ecosystem critical load datasets used here, using a combination of 2011 and 2013 emissions inventories. The spatial extent of the regions in exceedance of critical loads varied between 1 × 104 and 3.3 × 105km2, for the more conservative observation-corrected estimates of deposition, with the variation dependent on the ecosystem and critical load calculation methodology. The larger estimates (for aquatic ecosystems) represent a substantial fraction of the area of the provinces examined.

Base cation deposition was shown to be sufficiently high in the region to have a neutralizing effect on acidifying deposition, and the use of the aircraft and precipitation observation-based corrections to base cation deposition resulted in reasonable agreement with snowpack data collected in the oil sands area. However, critical load exceedances calculated using both observations and observation-corrected deposition suggest that the neutralization effect is limited in spatial extent, decreasing rapidly with distance from emissions sources, due to the rapid deposition of emitted primary dust particles as a function of their size. We strongly recommend the use of observation-based correction of model-simulated deposition in estimating critical load exceedances, in future work.

 Leave a Reply

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>